公因子計算公式?
短除法是求最大公因數的一種方法,也可用來求最小公倍數。求幾個數最大公因數的方法,開始時用觀察比較的方法,即:先把每個數的因數找出來,然后再找出公因數,最后在公因數中找出最大公因數。
短除符號就是把除號倒過來寫。短除就是在除法中寫除數的地方寫兩個數共有的質因數,然后落下兩個數被公有質因數整除的商,之后再除,以此類推,直到結果互質為止(兩個數互質)。
而在用短除計算多個數時,對其中任意兩個數存在的因數都要算出來,其它沒有這個因數的數則原樣落下。直到剩下每兩個都是互質的關系。
求最大公因數遍乘一邊,求最小公倍數遍乘一圈。
(公約數:亦稱“公因數”。是幾個整數同時均能整除的整數。如果一個整數同時是幾個整數的約數,稱這個整數為它們的“公約數”;公約數中最大的稱為最大公約數。)
=================================================
在用短除計算多個數時,對其中任意兩個數存在的因數都要算出,其它沒有這個因數的數則原樣落下。直到剩下每兩個都是互質關系。求最大公約數遍乘左邊所有數公共的因數,求最小公倍數遍乘一圈。這種方法對求兩個以上數的最大公因數,特別是數目較大的數,顯然是不方便的。于是又采用了給每個數分別分解質因數的方法。
========================================
例如:求12與18的最大公因數。以下如有約數出現則為因數
短除法例題
12的因數有:1、2、3、4、6、12。
18的因數有:1、2、3、6、9、18。
12與18的公因數有:1、2、3、6。
12與18的最大公因數是6。
這種方法對求兩個以上數的最大公因數數,特別是數目較大的數,顯然是不方便的。于是又采用了給每個數分別分解質因數的方法。
12=2×2×3
18=2×3×3
12與18都可以分成幾種形式不同的乘積,但分成質因數連乘積就只有以上一種,而且不能再分解了。所分出的質因數無疑都能整除原數,因此這些質因數也都是原數的因數。從分解的結果看,12與18都有公因數2和3,而它們的乘積2×3=6,就是 12與18的最大公因數。
采用分解質因數的方法,也是采用短除的形式,只不過是分別短除,然后再找公約數和最大公約數。如果把這兩個數合在一起短除,則更容易找出公約數和最大公約數。
從短除中不難看出,12與18都有公約數2和3,它們的乘積2×3=6就是12與18的最大公約數。與前邊分別分解質因數相比較,可以發現:不僅結果相同,而且短除法豎式左邊就是這兩個數的公共質因數,而兩個數的最大公約數,就是這兩個數的公共質因數的連乘積。
實際應用中,是把需要計算的兩個或多個數放置在一起,進行短除。
在計算多個數的最小公倍數時,對其中任意兩個數存在的約數都要算出,其它無此約數的數則原樣落下。最后把所有約數和最終約分的數連乘即得到最小公倍數。