色婷婷狠狠18禁久久YY,CHINESE性内射高清国产,国产女人18毛片水真多1,国产AV在线观看

python 輪盤賭

Python是一種高級(jí)編程語言,用于開發(fā)各種應(yīng)用程序。在Python中,輪盤賭算法是一種常見的遺傳算法,用于優(yōu)化問題的求解。該算法模仿自然選擇過程,不斷進(jìn)化和改進(jìn)結(jié)果,直到獲得最優(yōu)解。

import random
import numpy as np
# 定義適應(yīng)度函數(shù)
def fitnessFunction(x):
return x**2
# 初始化種群
def initializePopulation(popSize, genomeSize):
population = []
for i in range(popSize):
genome = []
for j in range(genomeSize):
genome.append(random.randint(0, 1))
population.append(genome)
return population
# 計(jì)算每個(gè)個(gè)體的適應(yīng)度
def calculateFitness(population):
fitnessValues = []
for genome in population:
decodedGenome = 0
for i in range(len(genome)):
decodedGenome += genome[i] * 2**i
decodedGenome = (decodedGenome / (2**len(genome)-1)) * 10
fitness = fitnessFunction(decodedGenome)
fitnessValues.append(fitness)
return fitnessValues
# 選擇操作
def selection(population, fitnessValues, numParents):
parents = []
for i in range(numParents):
parents.append(population[np.argmax(fitnessValues)])
fitnessValues[np.argmax(fitnessValues)] = -1
return parents
# 交叉操作
def crossover(parents):
offspring = []
for i in range(len(parents)):
offspring.append(parents[i])
for i in range(0, len(parents), 2):
point = random.randint(1, len(parents[i])-1)
offspring[i][:point] = parents[i+1][:point]
offspring[i+1][:point] = parents[i][:point]
return offspring
# 變異操作
def mutation(offspring, mutationRate):
for i in range(len(offspring)):
for j in range(len(offspring[i])):
if random.random()< mutationRate:
offspring[i][j] = 1 - offspring[i][j]
return offspring
# 輪盤賭遺傳算法
def rouletteWheelGA(popSize, genomeSize, numParents=2, numGenerations=50, mutationRate=0.01):
population = initializePopulation(popSize, genomeSize)
for i in range(numGenerations):
fitnessValues = calculateFitness(population)
parents = selection(population, fitnessValues, numParents)
offspring = crossover(parents)
offspring = mutation(offspring, mutationRate)
population = parents + offspring
return population
# 實(shí)現(xiàn)輪盤賭遺傳算法
popSize = 50
genomeSize = 5
numParents = 2
numGenerations = 50
mutationRate = 0.01
population = rouletteWheelGA(popSize, genomeSize, numParents, numGenerations, mutationRate)
print("Final population:")
for genome in population:
print(genome, "Fitness:", fitnessFunction(np.dot(genome, [16, 8, 4, 2, 1])))

在 Python 中使用輪盤賭算法非常容易,只需要定義適應(yīng)度函數(shù)、種群的初始化函數(shù)、選擇、交叉和變異操作,就可以完成輪盤賭遺傳算法的實(shí)現(xiàn)。這種算法可以用于解決各種優(yōu)化問題,如機(jī)器學(xué)習(xí)、數(shù)據(jù)分析和計(jì)算機(jī)視覺等領(lǐng)域。