色婷婷狠狠18禁久久YY,CHINESE性内射高清国产,国产女人18毛片水真多1,国产AV在线观看

大數據風控在金融科技中如何應用?難題何在?

林國瑞2年前20瀏覽0評論

一直以來,金融科技(FinTech)的發展常被劃分為三個階段:

第一階段FinTech3.0是金融業內通過IT技術實現辦公電子化;

第二階段FinTech2.0是通過互聯網實現金融業務中的資產端、交易端、支付端和資金端的互聯互通;

第三階段FinTech3.0是通過大數據、云計算、人工智能、區塊鏈技術來解決傳統金融的信息采集、風險定價模型、投資決策和信用中介等痛點。

由此可見,大數據風控作為金融科技FinTech3.0的重要落地場景,是大數據、云計算、人工智能等技術在金融行業風險控制領域的應用。這里的風控領域既包含了銀行的信貸風險,也包含了保險業和投資業的各類風險,其中信貸領域的應用發展最為迅速,融資企業數量最多,各大金融機構也最為重視。

與傳統銀行風控模式相比,大數據風控所需數據量更大,數據時效性更強、數據維度更多、數據處理更快。為了應對這些問題,需要應用的新技術包括大數據采集和處理、機器學習、生物特征識別、自然語言處理、用戶畫像等,其應用的場景也涵蓋了貸前準入、貸中審批和貸后管理幾個方面。

一大數據采集和處理

大數據采集和處理是大數據風控實施的前提,金融機構可以獲取的數據維度不涵蓋了海量互聯網數據、信用數據、合作數據、企業數據和歷史數據,通過大數據處理技術把非機構化數據轉換成結構化數據,進行清洗、抽取和轉換,以便于在此基礎上進行數據分析和各類新技術運用。信貸場景面臨最大的一個難題是技術門檻較高,一方面需要具有分布式計算集群的架設經驗,另一方面也需要在分布式平臺上各類數據處理和分析工具的使用經驗。第二個難題就是數據難以獲取,以及獲取數據的質量和合法性問題。

二機器學習

首先是新算法應用。通過將各類新型的機器學習算法應用到信貸場景,一方面無監督算法可以監測異常交易,控制欺詐風險和信用風險;另一方面有監督算法構建和探索輸入變量和目標變量之間線性或非線性的關系,對客戶進行分類,以便于實施差異化風險策略。其次是在線學習。針對欺詐監測實時性較強的特點,在線學習技術次是在線學習。針對欺詐監測實時性較強的特點,在線學習技術通過對數據實時訓練,預測欺詐概率。隨著機器學習技術的發展,在線學習技術能夠監測識別出更加復雜的欺詐行為。最后是模型自主迭代。隨著數據維度的日益豐富,金融機構更加傾向于運用多級模型和策略進行信貸風控智能化。這時,一旦輸入變量發生變化,就會影響到模型結果。模型自主迭代技術可以在保證模型輸出穩健性的同時,根據輸入數據變化調整模型參數,該過程不需要過多人工干預,極大提升了效率。該技術直接的應用就是自動決策引擎,以數據化、智能化驅動自動審批。這方面最大的問題就是決策過程過于復雜,使得解釋性較差。同時,過于智能化的流程設計使得該類方法的穩定性和泛化性較差,需要快速迭代。

三生物特征識別

近年來,生物特征識別被廣泛應用到信貸審批流程中,尤其是人臉識別、指紋識別、聲紋識別、虹膜識別等。從金融行業的應用來看,指紋識別應用最廣,超過了市場份額的一半。生物特征識別應用的場景包括:遠程開戶、身份核驗、放款確認等。這方面技術性難題相對較少,更多的是數據隱私和數據安全問題。

四自然語言處理

自然語言處理包括語音識別和文字識別,與生物特征識別相比,自然語言處理更進一步,具備了理解語言的能力。通過挖掘語音信息、文本轉換后的語義信息,可以輔助客服人員監測客戶情緒;與機器學習結合,可以在某種程度上替代人工客服,提供智能語音機器人服務。這方面最大問題是語言和環境的復雜性,人類思維的跳躍性和語言的模糊性會增加語義識別的難度,進而造成錯誤的決策。

五用戶畫像

用戶畫像技術建立在海量數據維度的基礎上,根據用戶社會屬性、生活習慣和消費行為抽象出標簽化的用戶模型。對于金融機構來說,用戶畫像可以幫助企業從業務角度分析客戶,了解用戶特征,控制用戶風險。用戶畫像技術通常與聚類算法結合使用,通過系統的梳理用戶群體,分析惡意用戶的行為特征,采取針對性的風控規則。這方面最大問題是用戶標簽的準確性,以及與關聯風控規則之間的穩定性。