有哪些數學定理或公式說明你學過數學?
小學數學幾何公式
周長:長方形的周長 = (長+寬)×2 = 2(a+b) = (a+b)×2正方形的周長 = 邊長×4 = 4a圓的周長 = 圓周率×直徑 = π d = 圓周率×半徑×2 = 2 π r面積長方形的面積 = 長×寬 S = ab正方形的面積 = 邊長×邊長 S = a三角形的面積=底×高÷2 S=ah÷2平行四邊形的面積=底×高 S=ah梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2直徑=半徑×2 d=2r半徑=直徑÷2 r=d÷2圓的面積=圓周率×半徑×半徑三角形的面積=底×高÷2 S=a×h÷2正方形的面積=邊長×邊長 S=a×a長方形的面積=長×寬 S=a×b平行四邊形的面積=底×高 S=a×h梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2內角和:三角形的內角和=180度長方體的體積=長×寬×高 V=abc長方體(或正方體)的體積=底面積×高 V=Sh正方體的體積=棱長×棱長×棱長 V=aaa圓的面積=半徑×半徑×π S=πr2圓柱的側面積:圓柱的側面積等于底面的周長乘高。S=ch=πdh=2πrh圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。S=ch+2s=ch+2πr2圓柱的體積:圓柱的體積等于底面積乘高。V=Sh圓錐的體積=1/3底面積×高。V=1/3Sh分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。分數的乘法則:用分子的積做分子,用分母的積做分母。分數的除法則:除以一個數等于乘以這個數的倒數。常見單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米(4)1噸=1000千克 1千克=1000克= 1公斤=2市斤(5)1公頃=10000平方米 1畝=666.666平方米(6)1升=1立方分米=1000毫升 1毫升=1立方厘米(7)1元=10角 1角=10分 1元=100分(8)1世紀=100年 1年=365天(平年)、366天(閏年) 1天=24小時 1小時=60分鐘=3600秒 1分鐘=60秒 1秒=1000毫秒初級數量關系公式
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數3、速度×時間=路程 路程÷速度=時間路程÷時間=速度4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價命題邏輯語義公式
根據謂詞邏輯的語義推導規則,語義應該具有一致性,就是對于一個命題邏輯語句集f,當且僅當至少存在這樣一種解釋i,f的一切元素在i之下都是真的,那么,f是語義一致的 。在命題邏輯語義學內,一個賦值不能同時把真和假給予某個命題原子式。在命題邏輯語義學中,在同一解釋下,一個集合不能既屬于某個謂詞的外延又不屬于該謂詞的外延。歐氏平面幾何
線角
1 過兩點有且只有一條直線2 兩點之間線段最短3 同角或等角的補角相等4 同角或等角的余角相等5 過一點有且只有一條直線和已知直線垂直6 直線外一點與直線上各點連接的所有線段中,垂線段最短7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行9 同位角相等,兩直線平行10 內錯角相等,兩直線平行11 同旁內角互補,兩直線平行12兩直線平行,同位角相等13 兩直線平行,內錯角相等14 兩直線平行,同旁內角互補[2]三角形
15 定理 三角形任意兩邊的和大于第三邊16 推論 三角形任意兩邊的差小于第三邊17 三角形內角和定理 三角形三個內角的和等于180°18 推論1 直角三角形的兩個銳角互余19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角21 全等三角形的對應邊、對應角相等22邊角邊公理(sas) 有兩邊和它們的夾角對應相等的兩個三角形全等23 角邊角公理( asa)有兩角和它們的夾邊對應相等的兩個三角形全等24 邊邊邊公理(sss) 有三邊對應相等的兩個三角形全等25 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應相等的兩個直角三角形全等26 定理1 在角的平分線上的點到這個角的兩邊的距離相等27 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上28定理3 △ABC中,作∠A的角平分線交BC于D,此時AB:AC=BD:CD29 角的平分線是到角的兩邊距離相等的所有點的集合30等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35 推論1 三個角都相等的三角形是等邊三角形36 推論 2 有一個角等于60°的等腰三角形是等邊三角形37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38 直角三角形斜邊上的中線等于斜邊上的一半39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42 定理1 關于某條直線對稱的兩個圖形是全等形43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線 44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上44逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱45勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^246勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形47角角邊(aas)有兩條邊和其中一邊的對角分別對應相等的兩個三角形全等[3]四邊形
48定理 四邊形的內角和等于360°49四邊形的外角和等于360°50多邊形內角和定理 n邊形的內角的和等于(n-2)×180°51推論 任意多邊的外角和等于360°52平行四邊形性質定理1 平行四邊形的對角相等53平行四邊形性質定理2 平行四邊形的對邊相等54推論 夾在兩條平行線間的平行線段相等55平行四邊形性質定理3 平行四邊形的對角線互相平分56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形60矩形性質定理1 矩形的四個角都是直角61矩形性質定理2 矩形的對角線相等62矩形判定定理1 有三個角是直角的四邊形是矩形63矩形判定定理2 對角線相等的平行四邊形是矩形64菱形性質定理1 菱形的四條邊都相等65菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即s=(a×b)÷267菱形判定定理1 四邊都相等的四邊形是菱形68菱形判定定理2 對角線互相垂直的平行四邊形是菱形69正方形性質定理1 正方形的四個角都是直角,四條邊都相等70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71定理1 關于中心對稱的兩個圖形是全等的72定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分73逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 l=(a+b)÷2 s=l×h83 (1)比例的基本性質 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性質 如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似91 相似三角形判定定理1 兩角對應相等,兩三角形相似(asa)92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(sas)94 判定定理3 三邊對應成比例,兩三角形相似(sss)95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比97 性質定理2 相似三角形周長的比等于相似比98 性質定理3 相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值圓
101圓是定點的距離等于定長的點的集合102圓的內部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理 不在同一直線上的三點確定一個圓。110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2 圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等116定理 一條弧所對的圓周角等于它所對的圓心角的一半117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角121①直線l和⊙o相交 d﹤r②直線l和⊙o相切 d=r③直線l和⊙o相離 d﹥r122切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質定理 圓的切線垂直于經過切點的半徑124推論1 經過圓心且垂直于切線的直線必經過切點125推論2 經過切點且垂直于切線的直線必經過圓心126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角127圓的外切四邊形的兩組對邊的和相等上一篇手機能拍自媒體嗎
下一篇在哪里找工作比較合適