什么樣的矩陣對角線為特征值?
綜述:|A-λE|=0,λ特征值,是主對角線元素相減,而對角矩陣,特征值和對角線元素相等,正好滿足|A-λE|=0。
對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣,常寫為diag(a1,a2,...,an) 。對角矩陣可以認為是矩陣中最簡單的一種。
值得一提的是:對角線上的元素可以為 0 或其他值,對角線上元素相等的對角矩陣稱為數量矩陣;對角線上元素全為1的對角矩陣稱為單位矩陣。對角矩陣的運算包括和、差運算、數乘運算、同階對角陣的乘積運算,且結果仍為對角陣。
矩陣是高等代數學中的常見工具,也常見于統計分析等應用數學學科中。在物理學中,矩陣于電路學、力學、光學和量子物理中都有應用;計算機科學中,三維動畫制作也需要用到矩陣。 矩陣的運算是數值分析領域的重要問題。
將矩陣分解為簡單矩陣的組合可以在理論和實際應用上簡化矩陣的運算。對一些應用廣泛而形式特殊的矩陣,例如稀疏矩陣和準對角矩陣,有特定的快速運算算法。