1742年給歐拉的信中哥德巴赫提出了以下猜想:任一大于2的偶數(shù)都可寫成兩個(gè)質(zhì)數(shù)之和。但是哥德巴赫自己無法證明它,于是就寫信請(qǐng)教赫赫有名的大數(shù)學(xué)家歐拉幫忙證明,但是一直到死,歐拉也無法證明。因現(xiàn)今數(shù)學(xué)界已經(jīng)不使用“1也是素?cái)?shù)”這個(gè)約定,原初猜想的現(xiàn)代陳述為:任一大于5的整數(shù)都可寫成三個(gè)質(zhì)數(shù)之和。歐拉在回信中也提出另一等價(jià)版本,即任一大于2的偶數(shù)都可寫成兩個(gè)質(zhì)數(shù)之和。今日常見的猜想陳述為歐拉的版本。把命題"任一充分大的偶數(shù)都可以表示成為一個(gè)素因子個(gè)數(shù)不超過a個(gè)的數(shù)與另一個(gè)素因子不超過b個(gè)的數(shù)之和"記作"a+b"。1966年陳景潤(rùn)證明了"1+2"成立,即"任一充分大的偶數(shù)都可以表示成二個(gè)素?cái)?shù)的和,或是一個(gè)素?cái)?shù)和一個(gè)半素?cái)?shù)的和"。半個(gè)多世紀(jì)過去了,“1+1”還是沒被證明,真的很難證明嗎?
網(wǎng)站導(dǎo)航
- zblogPHP模板zbpkf
- zblog免費(fèi)模板zblogfree
- zblog模板學(xué)習(xí)zblogxuexi
- zblogPHP仿站zbpfang