色婷婷狠狠18禁久久YY,CHINESE性内射高清国产,国产女人18毛片水真多1,国产AV在线观看

python 高并發(fā)設計

劉柏宏2年前8瀏覽0評論

Python在高并發(fā)設計方面擁有非常出色的性能,它不僅可以支持多線程、多進程等并發(fā)模式,還可以通過各種庫和框架來實現分布式計算和負載均衡等功能。以下是一些常見的Python高并發(fā)設計模式:

# 多線程模式
import threading
def worker():
print("I am working in thread {}".format(threading.current_thread().name))
threads = []
for i in range(5):
t = threading.Thread(target=worker, name="Thread {}".format(i))
threads.append(t)
t.start()
for t in threads:
t.join()
# 多進程模式
import multiprocessing
def worker():
print("I am working in process {}".format(multiprocessing.current_process().name))
processes = []
for i in range(5):
p = multiprocessing.Process(target=worker, name="Process {}".format(i))
processes.append(p)
p.start()
for p in processes:
p.join()
# 協(xié)程模式
import asyncio
async def worker():
await asyncio.sleep(1)
print("I am working in coroutine {}".format(asyncio.Task.current_task().get_name()))
loop = asyncio.get_event_loop()
tasks = []
for i in range(5):
t = asyncio.Task(worker(), name="Coroutine {}".format(i))
tasks.append(t)
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
# 分布式計算模式
from concurrent.futures import ProcessPoolExecutor
def worker():
# do some heavy computation
return result
executor = ProcessPoolExecutor(max_workers=5)
futures = []
for i in range(5):
future = executor.submit(worker)
futures.append(future)
results = []
for future in futures:
result = future.result()
results.append(result)
# 負載均衡模式
import random
def worker():
# do some work
return result
workers = ["worker1", "worker2", "worker3"]
results = []
while True:
worker = random.choice(workers)
result = call(worker)
results.append(result)
if len(results) == len(workers):
break
# 總結
無論采用哪種高并發(fā)設計模式,在編寫和調試時都需要非常小心,必須考慮到線程安全、資源競爭、死鎖等問題,并使用適當的調試工具和技術來排除故障和優(yōu)化性能。